For instance: The List of VAK
About consortium subscription Contacts
(812) 4095364 Non-commercial partnership
St. Petersburg


"Humanities and Science University Journal" №15 (Physical and mathematical, biological and technical science), 2015

Integration Algorithm Using a Fourth Order L-stable Method

E. A. Novikov, A. E. Novikov
Price: 50 руб.
 The paper offers a way of linearizing order conditions. It allows simplifying the investigation of (m,k)-methods. The authors have constructed the L-stable (4,2)-method of the fourth order and have obtained the inequality for accuracy control of calculations. The paper presents numerical results which confi rm the efficiency of the alternating step algorithm.
Keywords: stiff system, (4,2)-scheme, embedded method, accuracy control, alternating step.
1. Rosenbrock, H.H. Some general implicit processes for the numerical solution of
differential equations. The Computer Journal, 1963, 5(4), 329–330.
2. Hairer, E., & Wanner, G. Solving Ordinary Differential Equations II — Stiff and
Differential-Algebraic Problems. 1996, Berlin: Springer-Verlag.
3. Novikov, E.A., & Shornikov, Yu.V. Computer simulation of stiff hybrid systems
[Компьютерное моделирование жестких гибридных систем]. 2012, Novosibirsk:
Publisher of NSTU.
4. Tseligorov, N.A., & Mafura, G.M. The approach to the study of robust absolute
stability of nonlinear impulse control systems with monotone characteristics [Подход
к исследованию робастной абсолютной устойчивости нелинейных импульсных
систем управления с монотонными характеристиками]. Russian Electromechanics,
2013, 5, 44–48.
5. Novikov, V.A., Novikov, E.A., & Yumatova, L.A. Freezing of the Jacobi matrix
in the second order rosenbrock method. USSR Computational Mathematics and Mathematical Physics, 1987, 27(2), 41–45.
6. Novikov, A.E., & Novikov, E.A. Numerical Integration of Stiff Systems with Low
Accuracy. Mathematical Models and Computer Simulations, 2010, 22(1), 46-56.
7. Novikov, E.A. A class of one-step non-iterative methods for solving stiff systems.
Actual problems of Computational and Applied Mathematics, 1987, 138–139.
8. Novikov, E.A., Shitov, Yu.A., & Shokin, Yu.I. One-step iteration-free methods
for solving stiff systems. Soviet Math. Dokl., 1989, 38(1), 212–216.
9. Dahlquist, G.G. A special stability problem for linear multistep methods. BIT,
1963, 3(1), 27–43.
10. Novikov, E.A. Explicit methods for stiff systems [Явные методы для жестких
систем]. 1997, Novosibirsk: Nauka.
11. Showalter, K., Noyes, R.M., & Bar-Eli, K. A modified oregonator model, exhibiting complicated limit cycle behaviors in a flow system. J. Chem. Phys., 1978, 69(6),
12. Novikov, E.A. Numerical modeling of a modified oregonator by the (2,1)-method
for solving stiff problems. Numerical methods and programming, 2010, 11(1), 281–288.
13. Kampowski, W., Rentrop, P., & Schmidt, W. Classification and numerical simulation of electric circuits. Surveys on Mathematics for Industry, 1992, 2(1), 23–65.
14. Novikov, E.A., & Novikov, A.E. Simulation of the ring modulator with the modified Fehlberg method. Proceedings of the IX Russsian national research-and-engineering
conference Informational technologies in electric and power engineering, Cheboksary,
July, 12–14, 2014, Pp. 17–20.
15. Tseligorov, N.A., & Mafura, G.M. The effect of the variation of Popov’s parameter
on the size of the region of absolute robust stability of a monotonous nonlinear impulsive control system. Proceedings of the 2014 International Conference on Mathematical Mo dels and Methods in Applied Sciences (MMAS '14), Saint Petersburg State Polytechnic University Saint Petersburg, Russia, September 23–25, 2014, Pp. 252–256.
Price: 50 рублей
To order