LoginRegistration
For instance: The List of VAK
About consortium subscription Contacts
(812) 923 41 97 Non-commercial partnership
St. Petersburg
university
consortium
Your order
0
To the amount of:
0
руб.
Empty
View

Статьи

"Humanities and Science University Journal" №22 (Physical and mathematical, biological and technical science), 2016

On the Method of Digital Image Analysis Based on the Construction of a Stationary Flow on Graph

N. B. Ampilova, V. D. Sergeev, I. P. Soloviev
Price: 50 руб.
 The paper describes the method of digital image analysis, which is based on the  representation of an image by an oriented graph. Vertices correspond to image  pixels, edges connect the nearest neighbors. We assign a measure to all edges  so that to obtain a Markov chain on the graph. In accordance with the initial measure distribution the stationary fl ow is constructed and weighted entropy is calculated. The algorithm is implemented both for the base case (vertex corresponds to one pixel) and the optimized one — vertex corresponds to a cell of the image partition. The choice of the maximum allowed cell size depends on the image structure and may be obtained experimentally — comparing the weighted entropy values and run times for the base and optimized variants. The results of calculations for some classes of biomedical preparations images are given. The described optimization reduces the run time by 3–4 times.
Keywords: Digital images, oriented graph, Markov  chain,  stationary distribution, 
weighted entropy.
REFERENCES
1. Marcus, B., & Lind, D. An introduction to symbolic dynamics and coding (1st 
ed.). 1995: Cambridge University Press.
2. Ampilova, N., & Soloviev, I. On application of entropy characteristics to texture 
analysis. WSEAS Transactions on Biology and Biomedicine, 2014, 11(1), 194–202.
3. Ampilova, N.B. Stationary processes on graphs and image analysis [Стационарные 
процессы на графах и анализ изображений]. Computer Tools in Education, 2013, 
2, 24–29.
4. Sheleikhovsky, G.V. The composition of city plan as the transport problem 
[Композиция городского плана как проблема транспорта]. 1946, M.: Giprogor.
5. Bregman, L.M. The proof of the convergence of G.V.Sheleihovsky method for the 
task with transport restrictions [Доказательство сходимости метода Шелейховского 
для задачи с транспортными ограничениями]. Journal of Computational Mathematics 
and Mathematical Physics, 1967, 7(1), 147–156.
6. Bregman, L.M. Relaxation method for detecting a common point of convex set 
and its application to the solving convex programming tasks [Релаксационный метод 
нахождения общей точки выпуклых множеств и его применение для решения 
задач выпуклого программирования]. Journal of Computational Mathematics and 
Mathematical Physics, 1967, 7(3), 620–631.
7. Romanovskii, I.V. The optimization of the stationary control by a discrete 
deterministic process of dynamical programming [Оптимизация стационарного 
управления дискретным детерминированным процессом]. Cybernetic, 1967, 2, 
66–78.
8. Ampilova, N.B., Romanovskii, I.V., & Petrenko, E.I. On the maximiza-
tion of entropy for linear restrictions [О максимизации энтропии при линейных 
ограничениях]. Proceedings of the International Science Conference “Cosmos, 
astronomy and programming”, 2008, pp. 181–185.
Price: 50 рублей
To order