V. V. Kurtc, I. E. Anufriev
Price: 50 руб.
Nowadays the city-wide traffi c contains hundreds of thousands of vehicles with different scenarios of their behavior. If a microscopic approach is used it leads to solving tremendous systems of ordinary differential equations (ODE) whose components have a wide range of variation rates. The given paper has introduced a multirate numerical scheme with a selfadjusting time stepping strategy. Instead of using a single step size for the whole system we have determined the step size for each component by estimating its own local variation. We also performed the stability
analysis for a developed scheme. The presented multirate scheme provides a signi fi cant speed-up in processor times compared to the corresponding single-rate one. The use of multiple time steps admits parallel computing.
Keywords: multirate time stepping, stability, citywide traffi c simulation, ordinary differential equations.
REFERENCES
1. Bartel, A., & Gunther, M. A Multirate W-Method for Electrical Networks in State
Space Formulation. J. Comput. Appl. Math., 2002, 147, 411–425.
2. Engstler, C., & Lubich, C. Multirate Extrapolation Methods for Differential
Equations with Different Time Scales. Computing, 1997, 58, 173–185.
3. Engstler, C., & Lubich, C. MUR8: A Multirate Extension of the Eight-Order
Dormand-Prince method. Appl. Numer. Math., 1997, 25, 185–192.
4. Gear, C., & Wells, D. Multirate Linear Multistep Methods. BIT, 1984, 24,
484–502.
5. Gunther, M., Kværnø, A., & Rentrop, P. Multirate Partitioned Runge–Kutta
methods. BIT, 2001, 41, 504–514.
6. Hundsdorfer, W., & Savcenco, V. Analysis of a Multirate Theta-Method for Stiff
ODEs. Appl. Numer. Math., 2009, 59, 693–706.
7. Kurtc, V., & Anufriev, I. Local Stability Conditions and Calibrating Procedure
for New Car-Following Models Used in Driving Simulators. In Proceedings of the
10th Conference on Traffi c and Granular Flow’13, pp. 453–461. doi:10.1007/978-3-
319-10629-8__50
8. Kværnø, A. Stability of Multirate Runge–Kutta Schemes. Int. J. Differ. Equ. Appl.,
2000, 1(A), 97–105.
9. Logg, A. Multi-adaptive Galerkin Methods for ODEs I. SIAM J. Sci. Comput.,
2003, 24, 1879–1902.
10. Logg, A. Multi-adaptive Galerkin Methods for ODEs II. Implementation and
Applications. SIAM J. Sci. Comput., 2003, 25, 1119–1141.
11. Savcenco, V., Hundsdorfer, W., & Verwer, J.G. A Multirate Time Stepping
Strategy for Stiff Ordinary Differential Equations. BIT, 2007, 47, 137–155.
12. Shampine, L.F., Gladwell I., & Thompson, S. Solving ODEs with Matlab. 2003,
New York: Cambridge University Press.
13. Skelboe, S. Stability Properties of Backward Differentiation Multirate Formulas.
Appl. Numer. Math., 1989, 5, 151–160.
14. Treber, M., Henneke, A., & Helbing, D. Congested Traffi c States in Empirical
Observations and Microscopic Simulations. Phys. Rev. E, 2000, 62, 1805–1824.
15. Verhoeven, A., Maten, E.J.W. ter, Mattheij, R.M.M., & Tasic, B. Stability
Analysis of the BDF Slowest First Multirate Methods. (CASA-Report 0704). 2007,
Eindhoven: Technische Universiteit Eindhoven.