LoginRegistration
For instance: The Scientific Opinion
About consortium subscription Contacts
(812) 4095364 Non-commercial partnership
St. Petersburg
university
consortium

Articles

"Humanities and Science University Journal" №8, 2014

Hybrid Systems. Preliminary Comparative Analysis of Modelica and Model Vision Language

Yu. B. Kolesov, Yu. B. Senichenkov, A. Urquia, C. Martin-Villalba
Price: 50 руб.
 Object-Oriented Modeling (OOM) and hybrid systems are basic concepts of modern tools to model and simulate complex dynamical systems. However, object-oriented modeling technologies and state machines may be implemented in different ways in various tools. Implementations of OOM and hybrid systems in tools that support Modelica and Model Vision Language are discussed. The paper may be interesting for
researches and instructors who use Dymola, OpenModelica, and Rand Model Designer in research and education.

Keywords:
object oriented modeling; hybrid systems; algebraic-differential equations; computer simulation; numerical models; numerical simulation; engineering education.

REFERENCES
1. Rand Service Ltd, Rand Model Designer User Manual. Rand Service Ltd, 2010.
Retrieved 2013 from http://rand-service.com/instructions
2. Inihov, D., Kolesov, Y., & Senichenkov, Y. Physical Modeling of Hybrid Systems
with Rand Model Designer. In Proceedings of the 7th Vienna International Conference
on Mathematical Modelling, 2012, vol. 7, part 1, 49–54.
3. Rumbaugh, J., Jacobson, I., & Booch, G. The Unified Modeling Language
Reference Manual. 2005, Addison-Wesley.
4. MvStudium Group, Download site for Rand Model Designer Lite. Retrieved 2013
from http://www.mvstudium.com/download.php
5. Modelica Association, Modelica® – An Uni fi ed Object-Oriented Language for
Systems Modeling, Language Speci fi cation version 3.3. Modelica Association, 2012.
Retrieved 2013 from https://www.modelica.org
6. Modelica Association, Modelica Tools. Retrieved 2013 from https://www.
modelica.org/tools
7. Dynasim AB, Dymola – Dynamic Modeling Laboratory User’s Manual. 2008,
Lund, Sweden.
8. Open Source Modelica Consortium. Retrieved 2013 from http://www.ida.liu.se/
labs/pelab/modelica/OpenSourceModelicaConsortium.html
9. Elmqvist, H., Cellier, F.E., & Otter, M. Object-oriented modeling of hybrid
systems. In Proceedings of the European Simulation Symposium. 1993, Delft, The
Netherlands.
10. Mattsson, S.E., Otter, M., & Elmqvist, H. Modelica hybrid modeling and effi cient
simulation. In Proceedings of the 38th IEEE Conference on Decision and Control. 1999, Phoenix, AZ, USA. Pp. 3502–3507.
11. Otter, M., Elmqvist, H., & Mattsson, S.E. Hybrid modeling in Modelica based
on the synchronous data fl ow principle. In Proceedings of the 10th IEEE International
Symposium on Computer Aided Control System Design. 1999, Kohala Coast, HI, USA.
Pp. 151–157.
12. Cellier, F.E., & Elmqvist, H. Automated formula manipulation supports objectoriented continuous-system modeling. IEEE Control Systems, 1993, 13 (2), 28–38.
13. Fritzson, P., et al. The Open Source Modelica Project. In Proceedings of the 2nd
International Modelica Conference. 2002, Oberpfaffenhofen, Germany.
14. Cellier, F.E., & Kofman, E. Continuous System Simulation. 2006, Secaucus, NJ,
USA: Springer-Verlag New York, Inc.
15. Brenan, K.E., Campbell, S.L., & Petzold, L.R. Numerical Solution of InitialValue Problems in Differential-Algebraic Equations. 1996, Philadelphia, PA, USA:
SIAM.
16. Mattsson, S.E., & Söderlind, G. A New Technique for Solving High-Index
Differential Equations Using Dummy Derivatives. In Proceedings of the IEEE
Symposium on Computer-Aided Control System Design. 1992, California, USA.
17. Pantelides, C.C. The Consistent Initialization of Differential-algebraic Systems.
SIAM Journal on Scienti fi c Computing, 1988, 9 (2), 213–231.
18. Elmqvist, H., & Otter, M. Methods for Tearing Systems of Equations in
Object-Oriented Modeling. In Proceedings of the ESM’94, European Simulation
Multiconference. 1994, Barcelona, Spain.
19. Martin-Villalba, C., Urquia, A., & Dormido, S. An approach to virtual-lab
implementation using Modelica. Mathematical and Computer Modelling of Dynamical
Systems, 2008, 14(4), 341–360.
20. Urquia, A., Martin-Villalba, C., & Dormido, S. Interactive Simulation in
Modelica: a Proposal. In Proceedings of the 24th annual European Simulation and
Modelling Conference. 2010, Hasselt, Belgium.
21. Martin-Villalba, C., Urquia, A., & Dormido, S. Development of an industrial
boiler virtual-lab for control education using Modelica. Computer Applications in
Engineering Education (in press), DOI 10.1002/cae20449.
22. Martin-Villalba, C. Object-Oriented Modeling of Virtual Laboratories for Control
Education. PhD Dissertation. 2007, Madrid, Spain: Dept. Informática y Automática,
UNED.
23. Ramirez, W. F. Computational Methods for Process Simulation. 1989, Boston:
Butterworths Publishers. 209–217.
24. Urquia, A. & Dormido, S. Object-oriented design of reusable model libraries of
hybrid dynamic systems. Part two: a case study. Mathematical and Computer Modelling
of Dynamical Systems, 2003, 9 (1), 91–118.
Price: 50 рублей
To order