LoginRegistration
For instance: Humanities and Science University Journal
About consortium subscription Contacts
(812) 4095364 Non-commercial partnership
St. Petersburg
university
consortium

Articles

"Humanities and Science University Journal" №24 (Physical and mathematical, biological and technical science), 2016

Features of Solver Implementation for Analysis of Hybrid System Modal Behavior

Yu. V. Shornikov, M. S. Nasyrova, D. N. Dostovalov
Price: 50 руб.
 The given article considers the class of hybrid systems. The architecture of the instrumental environment for the simulation of complex dynamic and hybrid systems is given. The algorithms of a variable step with accuracy and stability control of the numerical scheme for solving high-dimensional Cauchy problems are proposed. The algorithms are based on explicit methods of Runge-Kutta type. The sequential and parallel implementation of numerical methods is presented. The developed library of numerical methods focuses on cluster systems with distributed memory. The comparative analysis of the considered algorithms is performed using the example of the reaction-diffusion problem associated with the Lotka-Volterra model.
Keywords: hybrid systems, accuracy and stability control, variable step, Runge-Kutta methods, sequential and parallel implementation, high-dimensional problems, LotkaVolterra model.
REFERENCES
1. Esposito, J., Kumar, V., & Pappas, G.J. Accurate event detection for simulating hybrid systems. Hybrid Systems: Computation and Control (HSCC 2001), 2001, 2034, 204–217. doi:10.1007/3-540-45351-2_19
2. Novikov, E.A., & Shornikov, Yu.V. Numerical simulation of hybrid systems by Runge-Kutta method of second accuracy order [Численное моделирование гибридных систем методом Рунге-Кутта второго порядка точности]. Computing techologies, 2008, 13(2), 98–104.
3. Novikov, A.E., Novikov, E.A., & Shornikov, Yu.V. Simulation of hybrid systems by explicit methods [Моделирование гибридных систем явными методами]. The Bulletin of KrasGAU: Saving techologies of Agricultural Mechanization, 2009, 5, 88–92.
4. Hairer, E., Wanner, G. Solving ordinary differential equations II. Stiff and differential-algebraic problems. 1996, Berlin: Springer.
5. Novikov, E.A., Shitov, Yu.A., & Shokin, Yu.I. One-step non-iterating methods for solving stiff systems [Одношаговые безытерационные методы для решения жестких систем]. Reports of the USSR Academy of Sciences, 1988, 301(6), 1310– 1314.
6. Novikov, E.A., Shitov, Yu.A., & Shokin, Yu.I. A class of (m, k)-methods for solving stiff systems [О классе (m,k) — методов для решения жестких систем]. Journal of Computational Mathematics and Mathematical Physics, 1989, 29(2), 194–201.
7. Novikov, E.A., & Shitov, Yu.A. Algorithms of stiff systems integration based on (m,k)-methods of second accuracy order with numerical computation of Jacobi matrix (preprint 20) [Алгоритмы жестких систем интегрирования, основанные на (m,k) — методах второго порядка точности с численным вычислением матрицы Якоби (препринт 20)]. 1988, Krasnoyarsk: Siberian Branch of the USSR Academy of Sciences.
8. Novikov, E.A. Explicit methods for stiff systems [Явные методы для жестких систем]. 1997. Novosibirsk: Nauka.
9. Shornikov, Yu.V., & Bessonov, A.V. A unifi ed approach to computer simulation of hybrid systems [Унифицированный подход к компьютерному моделированию гибридных систем]. Information Technology of Modeling and Control, 2015, 3 (93), 286–298.
10. Brown, P.N., & Hindmarsh, A.C. Matrix free methods in the solution of stiff systems of ODEs. 1983. Livermore: Lawrence Livermore National Laboratory.
11. Breitenecker, F. Development of simulation software — from simple ODE modelling to structural dynamic systems. Proceedings of 22nd European Conference on Modelling and Simulation, Vienna, 2008, pp. 5–22. doi:10.7148/2008-0005-0022
12. Breitenecker, F., & Popper, N. Classifi cation and evaluation of features in advanced simulators. Proceedings MATHMOD 09 Vienna, 2009.
 
Price: 50 рублей
To order