LoginRegistration
For instance: Humanities and Science University Journal
About consortium subscription Contacts
(812) 4095364 Non-commercial partnership
St. Petersburg
university
consortium

Articles

"Humanities and Science University Journal" №17 (Physical and mathematical, biological and technical science), 2016

Fatigue Assessment of the Fillet-Welded Joint Including the Material Inhomogeneity

R. V. Guchinsky, S. V. Petinov
Price: 50 руб.
 The article proposes an approach to the finite element modeling of fatigue cracks
nucleation and growth based on the assessment of material damage accumulation. The suggested simulation scheme takes into account the heterogeneity of the material fatigue resistance, the closure effect and elastic-plastic material response. The proposed technique considers the crack initiation phase and allows performing crack growth calculations in areas with significant plastic strain. The approach has been used to model the three-dimensional crack propagation from internal cavity until its occurrence on the outer surface in non-continuous filletwelded joint. It is shown that the life scatter of the weld joint is affected by the crack nucleation stage. The results of life calculation accounting for the initial material inhomogeneity and obtained crack front evolution are in good agreement with the published experimental data.
Keywords: weld joint, fatigue, damage accumulation, fatigue crack, FEM, microstructure, life scatter.
REFERENCES
1. Guchinsky, R.V. , & Petinov, S.V. Development unit construction ship condition fatigue life. St. Petersburg State Polytechnical University Journal, 2012, 4(159),
177–186.
2. Niemi, E. Structural stress approach to fatigue analysis of welded components.
Designer’s Guide (IIW Doc. XIII-WG3-06-99). 2000.
3. Hobbacher, A. Recommendations for fatigue design of welded joints and components (IIW Doc. XIII-2151r1-07/XV-1254r1-07). 2007.
4. IACS Common structural rules for double hull oil tankers. 2006, Retrieved
January 15, 2016, from http://www.iacs.org.uk/document/public/Publications/Common_rules/PDF/CSR_Double_Hull_Oil_Tanker_pdf777.pdf
5. Frank, K.H., & Fisher, J.W. Fatigue strength of fillet welded cruciform joints.
Journal of the Structural Division, 1979, 105(9), 1727–1740.
6. Doshi, K., & Vhanmane, S. Probabilistic fracture mechanics based fatigue evaluation of ship structural details. Ocean Engineering, 2013, 61, 26–38.
7. Marquis, G. Failure modes and fatigue strength of improved HSS welds. Engineering Fracture Mechanics, 2010, 77(11), 2051–2062.
8. Kozin, F., & Bogdanoff, J.L. A critical analysis of some probabilistic models of
fatigue crack growth. Engineering Fracture Mechanics, 1981, 14(1), 59–89.
9. Guchinsky, R.V., Petinov, S.V., Siddique, S., Imran, M., & Walther, F. Fatigue life
prediction based on finite-element modeling damage accumulation including material
inhomogeneity. St. Petersburg State Polytechnical University Journal, 2015, 4(231),
134–143.
10. Xiang, Y., & Liu, Y. Application of inverse first-order reliability method for
probabilistic fatigue life prediction. Probabilistic Engineering Mechanics, 2011, 26(2),
148–156.
11. Kocanda, D., & Jasztal, M. Probabilistic predicting the fatigue crack growth
under variable amplitude loading. International Journal of Fatigue, 2012, 39, 68–74.
12. Paris, P.C., & Erdogan, F. A critical analysis of crack propagation laws. Journal
of Basic Engineering, 1963, 85(4), 528–533.
13. Guida, M., & Penta, F. A gamma process model for the analysis of fatigue crack
growth data. Engineering Fracture Mechanics, 2015, 142, 21–49.
14. Chapetti, M.D., & Jaureguizahar, L.F. Fatigue behavior prediction of welded
joints by using an integrated fracture mechanics approach. International Journal of
Fatigue, 2012, 43, 43–53.
15. Maljaars, J., Steenbergen, H.M.G.M., & Vrouwenvelder, A.C.W.M. Probabilistic model for fatigue crack growth and fracture of welded joints in civil engineering
structures. International Journal of Fatigue, 2012, 38, 108–117.
16. Remes, H. Strain-based approach to fatigue crack initiation and propagation in
welded steel joints with arbitrary notch shape. International Journal of Fatigue, 2013,
52, 114–123.
17. Rinaldi, A., Peralta, P., Krajcinovic, D., & Lai, Y.-C. Prediction of scatter in
fatigue properties using discrete damage mechanics. International Journal of Fatigue,
2006, 28(9), 1069–1080.
18. Warhadpande, A., Jalalahmadi, B., Slack, T.S., & Sadeghi, F. A new finite element fatigue modeling approach for life scatter in tensile steel specimens. International
Journal of Fatigue, 2010, 32(4), 685–697.
19. Bomidi, J.A.R., Weinzapfel, N., Wang, C.-P., & Sadeghi, F. Experimental and
numerical investigation of fatigue of thin tensile specimen. International Journal of
Fatigue, 2012, 44, 116–130.
20. Neuber, H. Theory of stress concentration for shear-strained prismatic bodies
with arbitrary nonlinear stress–strain law. Journal of Applied Mechanics, 1961, 28(4),
544–550.
21. Forsyth, P.J.E. A unified description of micro and macroscopic fatigue crack
behaviour. International Journal of Fracture, 1983, 5(1), 3–14.
22. Petinov, S.V. Fatigue Analysis of Ship Structures. 2003, USA: Backbone Publishing Co.
23. Elber, W. Fatigue crack closure under cyclic tension. Engineering Fracture
Mechanics, 1970, 2(1), 37–45.
24. Guchinsky, R.V., & Petinov, S.V. Numerical modeling of the semi-elliptical
fatigue crack growth using damage accumulation approach. Computational Continuum
Mechanics, 2015, 8(4), 376–385.
25. Glinka, G. A cumulative model of fatigue crack growth. International Journal
of Fatigue, 1982, 4(2), 59–67.
26. Ellyin, F., & Fakinlede, C.O. Probabilistic simulation of fatigue crack growth by
damage accumulation. Engineering Fracture Mechanics, 1985, 22(4), 697–712.
27. Petinov, S.V., Kim, W.S., & Paik, Y.M. Assessment of fatigue strength of weld
root in ship structure: an approximate procedure. Ship and Offshore Structures Journal,
2006, 1(1), 55–60.
28. Fricke, W., Doerk, O, & Grunitz, L. Fatigue strength investigation and assessment of fillet-welds around stiffener and bracket toes. Proceedings of Special FPSO
Conference of OMAE, 2004, Houston.
29. Karzov, G.P., Margolin, B.Z., & Shvetsova, V.A. Physical and Mechanical
Modeling of the Failure Processes [Физико-механическое моделирование процессов
разрушения]. 1993, Russia, St.Petersburg: Polytechnic Publ.
Price: 50 рублей
To order