LoginRegistration
For instance: Humanities and Science University Journal
About consortium subscription Contacts
(812) 923 41 97 Non-commercial partnership
St. Petersburg
university
consortium
Your order
0
To the amount of:
0
руб.
Empty
View

Статьи

"Humanities and Science University Journal" №10 (Physical and mathematical, biological and technical science), 2014.

Functional a Posteriori Error Estimates for Linear Elasticity: Computational Properties and Adaptive Algorithms

M. A. Churilova, M. E. Frolov
Price: 50 руб.
 The paper considers functional a posteriori error estimates for linear elasticity problems in 3D and their plane analogues. Several theorems on the computational properties of estimates and error indicators based on them are proved. Key features
of implementing these estimates to plane strain problems are analyzed and numerical results for the corresponding adaptive algorithms are provided.
Keywords: functional a posteriori error estimates, linear elasticity, adaptive algorithms,
Raviart-Thomas approximations.
REFERENCES
1. Arnold, D.N., Boffi , D., & Falk, R.S. Quadrilateral H(div) fi nite elements. SIAM
Journal on Numerical Analysis, 2005, Vol. 42, Iss. 6, 2429–2451.
2. Carstensen, C., & Rabus, H. The adaptive nonconforming FEM for the pure
displacement problem in linear elasticity is optimal and robust. SIAM Journal on
Numerical Analysis, 2012, 50 (3), 1264–1283.
3. Churilova, M. A. Computational properties of functional a posteriori estimates
for stationary reaction-diffusion problem [in Russian]. Vestnik of the St. Petersburg
University: Mathematics, 2014, Vol. 1, Iss. 1, 68–78.
4. Ekeland, I., & Temam, R. Convex analysis and variational problems. 1976,
Amsterdam: North-Holland Publishing Co.
5. Frolov, M. Application of functional error estimates with mixed approximations
to plane problems of linear elasticity. Computational Mathematics and Mathematical
Physics, 2013, 53 (7), 1000–1012.
6. Frolov, M. Implementation of error control for solving plane problems in linear
elasticity by mixed fi nite elements. Computational continuum mechanics, 2014, 7 (1),
73–81.
7. Frolov, M., Neittaanmäki, P. & Repin, S. On the reliability, effectivity and
robustness of a posteriori error estimation methods. In Heikkola, E., Kuznetsov, Y.,
Neittaanmäki, P., & Pironneau, O. (Eds.), Numerical methods for scientific
computing. Variational problems and applications, pp. 153–175, 2003, Barcelona:
CIMNE.
8. Mali, O., Neittaanmäki, P., & Repin, S. Accuracy Veri fi cation Methods. Theory
and algorithms (Computational Methods in Applied Sciences, Vol. 32). 2014, Dordrecht: Springer.
9. Muzalevsky, A., & Repin, S. On two-sided error estimates for approximate
solutions of problems in the linear theory of elasticity. Russian Journal of Numerical
Analysis and Mathematical Modelling, 2003, 18 (1), 65–85.
10. Raviart, P.A., & Thomas, J.M. A mixed fi nite element method for 2nd order
elliptic problems. In Mathematical aspects of the fi nite element method. Lecture
Notes in Mathematics (Vol. 606), 1977, Berlin, Heidelberg, New York: Springer.
11. Repin, S. A posteriori estimates for partial differential equations (Radon series
on computational and applied mathematics, Vol. 4). 2008, Berlin: Walter de Gruyter.
12. Repin, S., Sauter, S. & Smolianski, A. A posteriori error estimation for the
Dirichlet problem with account of the error in the approximation of boundary conditions.
Computing, 2003, Vol. 70, Iss. 3, 205–233.
Price: 50 рублей
To order