Any pair of adjoint functors makes it possible ʲnally to determine such a speciʲc object
as a monad. Being a sophisticated and elegant theoretical and categorical structure, this
object is closely related to computer programmes. The paper is devoted to the logical and philosophical analysis of this relation.
Key words: theory of categories, computer sciences, adjoint functors, monad,
endofunctor, Kleisli category.
References
1. Awodey S. Category theory. N.Y. Oxford, 2010. 311 p.
2. Goldblatt R. Topoi. The categorial analysis of logic. N.Y. Dover Publications Inc. 2006. 552 p.
3. Heinrich Kleisli. URL: https://en.wikipedia.org/wiki/Heinrich_Kleisli (data obrashcheniya: 23.10.2018).
4. Lawvere F. W. & Schanuel S. 1997. Conceptual Mathematics: A First Introduction to Categories. Cambridge: Cambridge University Press. 390 p.
5. Leinster T. Basic Category Theory. UK, Cambridge University Press, 1994. 183 p.
6. Mac Lane, Saunders. Categories for the Working Mathematician. N. Y., Springer, 1978. 317 p.
7. Milewski B. Category Theory for Programmers. 2017. URL: https://github.com/hmemcpy/milewski-ctfp-pdf (data obrashcheniya: 23.10.2018).
8. Moggi Eugenio. Notions of computation and monads. Information and Computation. Vol. 93. № 1. 1991. P. 55–92.