LoginRegistration
For instance: The Scientific Opinion
About consortium subscription Contacts
(812) 4095364 Non-commercial partnership
St. Petersburg
university
consortium

Articles

Humanities and Science University Journal №35 (Physical and mathematical, biological and technical science), 2017

Molecular Dynamics Simulations of GaAs-crystal Surface Nanoindentation

N. D. Prasolov, M. Y. Krauchanka, L. M. Dorogin, H. K. Lipsanen, A. A. Gutkin, P. N. Brunkov
Price: 50 руб.
 In this paper, we presented the results of molecular dynamics simulations for
nanoindentation of a GaAs slab with perfect crystal structure by a hard spherical indenter with no adhesion forces between them. The obtained value for the
indentation force as a function of indentation depth was compared with the
Hertz problem, from which the modulus of elasticity for GaAs was extracted.
In addition, various approaches to calculating the contact area between the
hard, spherical indenter and the surface of the GaAs slab were presented: by
direct measurement of the contact cluster in molecular dynamics, the Hertz
model and the area of the sphere segment. A discussion was held to interpret
the results.

KeywordsMolecular dynamics, nanoindentation, contact mechanics, Hertz problem, contact area.
REFERENCES
1. Binnig, G., Quate, C.F., & Gerber, Ch. Atomic force microscope. Physical
Review Letters.
1986, Vol. 56, no. 9, pp. 930–933. doi:10.1103/PhysRevLett.56.930
2. Garcia, R., Knoll, A.W., & Riedo, E. Advanced scanning probe lithography. Nature Nanotechnology. 2014, Vol. 9, no. 8, pp. 577–587. doi:10.1038/
nnano.2014.157
3.
Robinson, A., & Lawson, R. Materials and Processes for Next Generation
Lithography: Volume 11. Netherlands: Elsevier, 2016, 634 pp.
4.
Tiwari, A., & Natarajan, S. Applied Nanoindentation in Advanced Materials.
UK: John Wiley & Sons Ltd., 2017, 680 pp. doi:10.1002/9781119084501
5.
Poon, B., Rittel, D., & Ravichandran, G. An analysis of nanoindentation in
linearly elastic solids.
International Journal of Solids and Structures. 2008, Vol. 45,
no. 24, pp. 6018–6033. doi:10.1016/j.ijsolstr.2008.07.021
6.
Jacobs, T.D., & Martini, A. Measuring and understanding contact area
at the nanoscale: a review.
Applied Mechanics Reviews. 2017, Vol. 69, no. 6.
doi:10.1115/1.4038130
7.
Ruestes, C.J., Alhafez, A.A., & Urbassek, H.M. Atomistic studies of nanoindentation – a review of recent advances. Crystals. 2017, Vol. 7, no. 10. doi:10.3390/
cryst7100293
8.
Brunkov, P.N., Goncharov, V.V., Rudinsky, M.E., Gutkin, A.A., Gordeev, N.Yu., Lantratov, V.M., Kalyuzhnyy, N.A., Mintairov, S.A., Sokolov, R.V.,
& Konnikov, S.G.
Local triboelectrification of an n-GaAs surface using the tip of
an atomic-force microscope.
Semiconductors. 2013, Vol. 47, no. 9, pp. 1170–1173.
doi:10.1134/S1063782613090054
9.
Baklanov, A.V., Gutkin, A.A., Kalyuzhnyy, N.A., & Brunkov, P.N. Effect of
the interaction conditions of the probe of an atomic-force microscope with the n-GaAs
surface on the triboelectrization phenomenon.
Semiconductors. 2015, Vol. 49, no. 8,
pp. 1057–1061. doi:10.1134/S1063782615080060
10.
Plimpton, S. Fast parallel algorithms for short-range molecular dynamics.
Journal of Computational Physics. 1995, Vol. 117, no. 1, pp. 1–19. doi:10.1006/
jcph.1995.1039
11.
Grierson, D.S., Flater, E.E., & Carpick, R.W. Accounting for the JKR–
DMT transition in adhesion and friction measurements with atomic force microscopy.
Journal of Adhesion Science and Technology. 2005, Vol. 19, no. 3–5, pp. 291–311.
doi:10.1163/1568561054352685
12.
Johnson, K.L. Contact mechanics. UK: Cambridge University Press, 1985,
452 pp. doi:10.1017/CBO9781139171731
13.
Murdick, D.A., Zhou, X.W., Wadley, H.N.G., Nguyen-Manh, D., Drautz, R.,
& Pettifor, D.G.
Analytic bond-order potential for the gallium arsenide system. Physical
Review B.
2006, Vol. 73, no. 4. doi:10.1103/PhysRevB.73.045206
14.
Gibbs, J.W. Elementary principles in statistical mechanics. USA, New York:
Charles Scribner’s Sons., 1902, 207 pp.
15.
Stukowski, A. Visualization and analysis of atomistic simulation data with
OVITO – the open visualization tool.
Modelling and Simulation in Materials Science
and Engineering.
2010, Vol. 18, no. 1. doi:10.1088/0965-0393/18/1/015012
16.
Kelchner C.L., Plimpton S.J., & Hamilton, J.C. Dislocation nucleation and
defect structure during surface indentation.
Physical Review B. 1998, Vol. 58, no. 17.
doi:10.1103/PhysRevB.58.11085
17.
Sadat, M.R., Bringuier, S., Muralidharan, K., Frantziskonis, G., &
Zhang, L.
Atomic-scale dynamics and mechanical response of geopolymer binder
under nanoindentation.
Computational Materials Science. 2018, Vol. 142, pp. 227–236.
doi:10.1016/j.commatsci.2017.10.026
18.
Dargys, A., & Kundrotas, J. Handbook on physical properties of Ge, Si, GaAs
and InP. Lithuania: Science and Encyclopedia Publishers, 1994.
19.
Ugural, A.C., & Fenster, S.K. Advanced strength and applied elasticity. USA:
Prentice Hall, 2003, 560 pp.

 
Price: 50 рублей
To order