LoginRegistration
For instance: The List of VAK
About consortium subscription Contacts
(812) 4095364 Non-commercial partnership
St. Petersburg
university
consortium

Articles

"Humanities and Science University Journal" №27 (Physical and mathematical, biological and technical science), 2017

The Thermal Stability of Enclosing Structures as a Power-Saving Factor

A. L. Antuskov, A. F. Ostrovaia, E. A. Statsenko, E. V. Kotov, T. A. Musorina, M. R. Petritchenko
Price: 50 руб.
 The thermal conditions of enclosing structures of buildings depends on many factors. The energy effi ciency of wall structures must meet the requirements of regulatory documents — 261 FL. This Law requires a low thermal conductivity to be able to build smart houses with low accumulation of heat. Currently, the focus is on structural and technological activities aimed at increasing the thermal resistance of the wall structures. The realization of high thermal resistance of the wall structure requires estimates of the thermal stability of the wall. The given article analyzes the thermal characteristics of building materials that are used in modern construction. The best solution for energy effi ciency of enclosing structures with taking into account the economic costs are selected.
Keywords: the protecting designs, energy effi ciency, thermal stability, heat conductivity,
thermal capacity, material density, heat-insulating materials.
REFERENCES
1. Alin, V., & Ioan, P. Flow and heat transfer over a vertical permeable stretching/
shrinking sheet with a second order slip. International Journal of Heat and Mass Transfer,
2013, 60(1), 355–364. doi:10.1016/j.ijheatmasstransfer.2012.12.028
2. Emel’janova, V.A., Nemova, D.V., & Miftahova, D.R. The optimized design
of the hinged ventilated façade [Оптимизированная конструкция навесного
вентилируемого фасада]. Magazine of Civil Engineering, 2014, 6, 67–74. doi:10.5862/
MCE.50.6
3. Federal Law “On energy saving and energy effi ciency improvements and on
Amendments to Certain Legislative Acts of the Russian Federation” [Об энерго-
сбережении и повышении энергетической эффективности и о внесении изменений
в отдельные законодательные акты Российской Федерации], dated 23.11.2009,
Received March 1, 2017, from http://www.consultant.ru/document/cons_doc_
LAW_93978/
4. Ivanova, E.S., & Gorshkov, A.S. Calculation of energy consumption of the building
with the minimum requirements for thermal protection [Расчет энергопотребления
здания, построенного по минимальным требованиям к тепловой защите]. Construction
of Unique Buildings and Structures, 2013, 4(43), 58–72.
5. Kornienko, S.V. Complex assessment of a heat-shielding of the protecting building
cover designs [Комплексная оценка теплозащиты ограждающих конструкций
оболочки здания]. Magazine of Civil Engineering, 2012, 7(33), 43–49. doi:10.5862/
MCE.33.5
6. Kornienko, S.V., Vatin, N.I., Petrichenko, M.R., & Gorshkov, A.S. Evaluation
of hygrothermal performance of multilayered wall design in annual cycle [Оценка
влажностного режима многослойной стеновой конструкции в годовом цикле].
Construction of Unique Buildings and Structures, 2015, 33, 19–33.
7. Kornienko, S.V. Testing of calculation method of the enclosing structures temperaturehumidity
conditions on the results of indoor climate in-situ measurements [Тестирование
метода расчета температурно-влажностного режима ограждающих конструкций на
результатах натурных изменений параметров микроклимата помещений]. Magazine
of Civil Engineering. 2012, 2(28), 18–23. doi:10.5862/MCE.28.3
8. Kočí, V., Maděra, J., & Černý, R. Exterior thermal insulation systems for AAC
building envelopes: Computational analysis aimed at increasing service life. Energy
and Buildings, 2012, 47, 84–90. doi:10.1016/j.enbuild.2011.11.030
9. Koudelka, T., Kruis, J., & Maděra, J. Coupled shrinkage and damage analysis
of autoclaved aerated concrete. Applied Mathematics and Computation, 2015, 267,
427–435. doi:10.1016/j.amc.2015.02.016
10. Kukolev, M.I., & Petrichenko, M.R. Determination of the temperature fi eld
wall with periodic exposure to heat [Определение температурного поля стенки при
периодическом тепловом воздействии]. Proceedings of the International Conference
“Dvigatel-2007”, pp. 2007, 71–75.
11. Nemova, D.V., Emel'janova, V.A., & Miftahova, D.R. Extremal calculation problems
of free convective movements in ventilated facades [Экспериментальные задачи
расчета свободноконвективных движений в навесных вентилируемых фасадах].
Magazine of Civil Engineering. 2010, 8(43), 46–53. doi:10.5862/MCE.43.7
12. Ostrovaja, A.F., Stacenko, E.A., Olshevskyi, V.J., & Musorina, T.A. Moisture
transfer in ventilated facade structures. Proceedings of the International Scientifi c Conference
Week of Science in SPbPU — Civil Engineering, MATEC Web of Conferences,
2016, 53. doi:10.1051/matecconf/20165301010
13. Petrichenko, M.R., Petrichenko, R.M., Kanishchev, A.B., & Shabanov, A.Yu.
Friction and thermal transmission in piston rings of internal combustion engines [Трение
и теплопередача в поршневых кольцах двигателей внутреннего сгорания]. 1990,
Leningrad: LGU.
14. Rubene, S., Vilnitis, M., & Noviks, J. Frequency analysis and measurements of
moisture content of AAC masonry constructions by EIS. Procedia Engineering, 2015,
Vol. 123, Proceeding of the Creative Construction Conference 2015, pp. 471–478.
doi:10.1016/j.proeng.2015.10.096
15. Tanner, J.E., Varela, J.L., Klingner, R.E., Brightman, M.J., & Cancino, U. Seismic
testing of autoclaved aerated concrete shearwalls: a comprehensive review. ACI
Structural Journal, 2005, 102(3), 374–382.
16. Set of rules “Thermal performance of buildings SP 50.13330.2012” [«Тепловая
защита зданий СП 50.13330.2012»], 2012, Received March 1, 2017, from nnhpe.
spbstu.ru/wp-content/uploads/2015/01/SP_50.13330.2012.pdf
17. Vatin, N., Petrichenko, M., Nemova, D., Staritcyna, A., & Tarasova, D. Renovation
of educational buildings to increase energy effi ciency. Applied Mechanics and
Materials, 2014, Vols. 633–634, 1023–1028. doi:10.4028/www.scientifi c.net/AMM.633-
634.1023
18. Vatin, N.I., Velichkin, V.Z., Gorshkov, A.S., Pestryakov, I.I., Peshkov, A.A.,
Nemova, D.V., & Kiski, C.C. Album of technical solutions for the use of thermal insulation
products from polyurethane foam of the trade mark “SPU-INSULATION” in
the construction of residential, public and industrial buildings [Альбом технических
решений по применению теплоизоляционных изделий из пенополиуретана
торговой марки «SPU-INSULATION» в строительстве жилых, общественных и
промышленных зданий]. Construction of Unique Buildings and Structures, 2013,
3(8), 1–264.
19. Vatin, N.I., Nemova, D.V., Rymkevich, P.P., & Gorshkov, A.S. Infl uence of
building envelope thermal protection on heat loss value in the building [Влияние
уровня тепловой защиты ограждающих конструкций на величину потерь тепловой
энергии в здании]. Magazine of Civil Engineering. 2012, 8(34), 4–14. doi:10.5862/
MCE.34.1
20. Vatin, N.I., Gorshkov, A.S., Nemova, D.V., Staritcyna, A.A., & Tarasova, D.S.
The energy-effi cient heat insulation thickness for systems of hinged ventilated facades.
Advanced Materials Research, 2014, Vols. 941–944, 905–920. doi:10.4028/www.scientifi
c.net/AMR.941-944.905
21. Vatin, N., Petrichenko, M., & Nemova, D. Hydraulic methods for calculation of
system of rear ventilated facades. Applied Mechanics and Materials, 2014, Vols. 633–
634, 1007–1012. doi:10.4028/www.scientifi c.net/AMM.633-634.1007
22. Zaborova, D.D., Kukolev, M.I., Musorina, T.A., & Petrichenko, M.R. The
simplest mathematical model of the energy effi cienty of layered building envelopes
[Математическая модель энергетической эффективности слоистых строительных
ограждений]. St. Petersburg State Polytechnical University Journal, 2016, 4, 28–33.
23. Zemitis, J., Borodinecs, A., & Frolova, M. Measurements of moisture production
caused by various sources. Energy and Buildings, 2016, 127, 884–891. doi:10.1016/j.
enbuild.2016.06.045
Price: 50 рублей
To order