LoginRegistration
For instance: The Scientific Opinion
About consortium subscription Contacts
(812) 923 41 97 Non-commercial partnership
St. Petersburg
university
consortium
Your order
0
To the amount of:
0
руб.
Empty
View

Статьи

"Humanities and Science University Journal" №17 (Physical and mathematical, biological and technical science), 2016

Software Package for Investigation of Robust and Absolute Stability of Nonlinear Impulsive Control Systems

N. A. Tseligorov, E. N. Tseligorova, G. M. Mafura
Price: 50 руб.
 This paper focuses on the development and application of a computer modelling software package for investigating uncertainty effects on absolute and robust stability of nonlinear impulsive control systems (NICS). Using the criterion of absolute stability on the equilibrium position, for a nonlinear control system with monotonous characteristics, allows us to simplify the task of finding the absolute stability to the interpretation of the
position of the control systems’ amplitude phase characteristics relative to Popov’s line. In addition, the investigation of robust stability is carried out with the introduction of interval polynomials. The strong Kharitonov theorem is applied, and for each resultant Kharitonov polynomial Popov’s locus is sketched out on the complex plane. This paper proposes a new method to investigate robust absolute stability of NICS. Besides, the
authors have provided an illustrative example.
Keywords: absolute robust stability, nonlinear impulsive system, perturbed polynomial, Popov’s parameter, Popov locus, amplitudephase characteristics, monotonous
nonlinearity.
REFERENCES
1. Tseligorov, N.A., & Mafura, G.M. The reasons for introduction of interval values
in mathematical models during determination of robust stability of control systems
[Причины возникновения интервальных значений в математических моделях
исследования робастной устойчивости систем управления]. Ingenerniy Vestnik
Dona, 2012, No. 4, Pt. 1. Retrieved January 15, 2016, from http://ivdon.ru/magazine/
archive/n4p1y2012/1277
2. Tseligorov, N.A., Tseligorova, E.N., & Mafura, G.M. Mathematical model
of a control system with uncertainty and means of determining stability of such
systems [Математические модели неопределённостей систем управления и
методы, используемые для их исследования]. Ingenerniy Vestnik Dona, 2012,
No. 4, Pt. 2. Retrieved January 15, 2016, from http://ivdon.ru/ru/magazine/archive/
n4p2y2012/1340
3. Novikov, E.A., & Schornikov, Y.V. Computer simulation of rigid hybrid systems.
2012, Novosibirsk: Publishing House of the Novosibirsk State Technical University.
4. Mutter, V.M. Absolute stability of nonlinear automated systems. 1973, Leningrad:
Shipbuilding.
5. Tsypkin, Ya.Z., & Popkov, Yu.S. Theory of Nonlinear Impulsive Systems. 1973,
Moscow: Nauka.
6. Haddad, W.M., Collins, E.G., & Bernstein, D.S. Robust stability analysis
using the small gain, circle, positivity, and Popov theorems: a comparative study.
IEEE Transactions on Control Systems Technology, 1993, Vol. 1, pp. 290–293.
doi:10.1109/87.260275
7. Tseligorov, N.A., & Tseligorova, E.N. Application of modified root locus method
for the study of robust absolute stability of multidimensional control systems. Pro-
ceedings of the Sixth International Conference on System Identification and Control
Problems SICPRO'07, 2007, ISP RAS, No. 13034.
8. Kharitonov, V.L. Asymptotic stability of an equilibrium position of a family of
systems of linear differential equations [Асимптотическая устойчивость положения
равновесия семейства систем дифференциальных уравнений]. 1978, Differential
Equations, 14(11), pp. 2086–2088.
Price: 50 рублей
To order